Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Clin Med ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610646

RESUMEN

Chronic kidney disease (CKD) is a slowly progressive condition characterized by decreased kidney function, tubular injury, oxidative stress, and inflammation. CKD is a leading global health burden that is asymptomatic in early stages but can ultimately cause kidney failure. Its etiology is complex and involves dysregulated signaling pathways that lead to fibrosis. Transforming growth factor (TGF)-ß is a central mediator in promoting transdifferentiation of polarized renal tubular epithelial cells into mesenchymal cells, resulting in irreversible kidney injury. While current therapies are limited, the search for more effective diagnostic and treatment modalities is intensive. Although biopsy with histology is the most accurate method of diagnosis and staging, imaging techniques such as diffusion-weighted magnetic resonance imaging and shear wave elastography ultrasound are less invasive ways to stage fibrosis. Current therapies such as renin-angiotensin blockers, mineralocorticoid receptor antagonists, and sodium/glucose cotransporter 2 inhibitors aim to delay progression. Newer antifibrotic agents that suppress the downstream inflammatory mediators involved in the fibrotic process are in clinical trials, and potential therapeutic targets that interfere with TGF-ß signaling are being explored. Small interfering RNAs and stem cell-based therapeutics are also being evaluated. Further research and clinical studies are necessary in order to avoid dialysis and kidney transplantation.

2.
Life (Basel) ; 14(2)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38398707

RESUMEN

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-ß and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.

3.
J Investig Med ; 72(1): 80-87, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37864505

RESUMEN

Dysregulated cholesterol metabolism represents an increasingly recognized feature of autism spectrum disorder (ASD). Children with fetal valproate syndrome caused by prenatal exposure to valproic acid (VPA), an anti-epileptic and mood-stabilizing drug, have a higher incidence of developing ASD. However, the role of VPA in cholesterol homeostasis in neurons and microglial cells remains unclear. Therefore, we examined the effect of VPA exposure on regulation of cholesterol homeostasis in the human microglial clone 3 (HMC3) cell line and the human neuroblastoma cell line SH-SY5Y. HMC3 and SH-SY5Y cells were each incubated in increasing concentrations of VPA, followed by quantification of mRNA and protein expression of cholesterol transporters and cholesterol metabolizing enzymes. Cholesterol efflux was evaluated using colorimetric assays. We found that VPA treatment in HMC3 cells significantly reduced ABCA1 mRNA, but increased ABCG1 and CD36 mRNA levels in a dose-dependent manner. However, ABCA1 and ABCG1 protein levels were reduced by VPA in HMC3. Furthermore, similar experiments in SH-SY5Y cells showed increased mRNA levels for ABCA1, ABCG1, CD36, and 27-hydroxylase with VPA treatment. VPA exposure significantly reduced protein levels of ABCA1 in a dose-dependent manner, but increased the ABCG1 protein level at the highest dose in SH-SY5Y cells. In addition, VPA treatment significantly increased cholesterol efflux in SH-SY5Y, but had no impact on efflux in HMC3. VPA differentially controls the expression of ABCA1 and ABCG1, but regulation at the transcriptional and translational levels are not consistent and changes in the expression of these genes do not correlate with cholesterol efflux in vitro.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Neuroblastoma , Embarazo , Femenino , Niño , Humanos , Ácido Valproico/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1/genética , Trastorno del Espectro Autista/inducido químicamente , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Colesterol/metabolismo , Antígenos CD36/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Life (Basel) ; 13(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38004296

RESUMEN

Mitochondrial degeneration in various neurodegenerative diseases, specifically in Alzheimer's disease, involves excessive mitochondrial fission and reduced fusion, leading to cell damage. P110 is a seven-amino acid peptide that restores mitochondrial dynamics by acting as an inhibitor of mitochondrial fission. However, the role of P110 as a neuroprotective agent in AD remains unclear. Therefore, we performed cell culture studies to evaluate the neuroprotective effect of P110 on amyloid-ß accumulation and mitochondrial functioning. Human SH-SY5Y neuronal cells were incubated with 1 µM and 10 µM of P110, and Real-Time PCR and Western blot analysis were done to quantify the expression of genes pertaining to AD and neuronal health. Exposure of SH-SY5Y cells to P110 significantly increased APP mRNA levels at 1 µM, while BACE1 mRNA levels were increased at both 1 µM and 10 µM. However, protein levels of both APP and BACE1 were significantly reduced at 10 µM of P110. Further, P110 treatment significantly increased ADAM10 and Klotho protein levels at 10 µM. In addition, P110 exposure significantly increased active mitochondria and reduced ROS in live SH-SY5Y cells at both 1 µM and 10 µM concentrations. Taken together, our results indicate that P110 might be useful in attenuating amyloid-ß generation and improving neuronal health by maintaining mitochondrial function in neurons.

5.
Diagnostics (Basel) ; 13(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958226

RESUMEN

Mild traumatic brain injury (TBI) and concussion can have serious consequences that develop over time with unpredictable levels of recovery. Millions of concussions occur yearly, and a substantial number result in lingering symptoms, loss of productivity, and lower quality of life. The diagnosis may not be made for multiple reasons, including due to patient hesitancy to undergo neuroimaging and inability of imaging to detect minimal damage. Biomarkers could fill this gap, but the time needed to send blood to a laboratory for analysis made this impractical until point-of-care measurement became available. A handheld blood test is now on the market for diagnosis of concussion based on the specific blood biomarkers glial fibrillary acidic protein (GFAP) and ubiquitin carboxyl terminal hydrolase L1 (UCH-L1). This paper discusses rapid blood biomarker assessment for mild TBI and its implications in improving prediction of TBI course, avoiding repeated head trauma, and its potential role in assessing new therapeutic options. Although we focus on the Abbott i-STAT TBI plasma test because it is the first to be FDA-cleared, our discussion applies to any comparable test systems that may become available in the future. The difficulties in changing emergency department protocols to include new technology are addressed.

6.
Neurol Int ; 15(3): 821-841, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37489358

RESUMEN

SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus disease 2019 (COVID-19). Long-term complications are an increasing issue in patients who have been infected with COVID-19 and may be a result of viral-associated systemic and central nervous system inflammation or may arise from a virus-induced hypercoagulable state. COVID-19 may incite changes in brain function with a wide range of lingering symptoms. Patients often experience fatigue and may note brain fog, sensorimotor symptoms, and sleep disturbances. Prolonged neurological and neuropsychiatric symptoms are prevalent and can interfere substantially in everyday life, leading to a massive public health concern. The mechanistic pathways by which SARS-CoV-2 infection causes neurological sequelae are an important subject of ongoing research. Inflammation- induced blood-brain barrier permeability or viral neuro-invasion and direct nerve damage may be involved. Though the mechanisms are uncertain, the resulting symptoms have been documented from numerous patient reports and studies. This review examines the constellation and spectrum of nervous system symptoms seen in long COVID and incorporates information on the prevalence of these symptoms, contributing factors, and typical course. Although treatment options are generally lacking, potential therapeutic approaches for alleviating symptoms and improving quality of life are explored.

7.
Medicina (Kaunas) ; 59(6)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37374288

RESUMEN

As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Inflamación/metabolismo , Encéfalo/patología , Citocinas/metabolismo , Cognición
8.
Vision (Basel) ; 7(2)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37092465

RESUMEN

The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.

9.
Metabolites ; 13(4)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37110138

RESUMEN

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality globally. In recent decades, clinical research has made significant advances, resulting in improved survival and recovery rates for patients with CVD. Despite this progress, there is substantial residual CVD risk and an unmet need for better treatment. The complex and multifaceted pathophysiological mechanisms underlying the development of CVD pose a challenge for researchers seeking effective therapeutic interventions. Consequently, exosomes have emerged as a new focus for CVD research because their role as intercellular communicators gives them the potential to act as noninvasive diagnostic biomarkers and therapeutic nanocarriers. In the heart and vasculature, cell types such as cardiomyocytes, endothelial cells, vascular smooth muscle, cardiac fibroblasts, inflammatory cells, and resident stem cells are involved in cardiac homeostasis via the release of exosomes. Exosomes encapsulate cell-type specific miRNAs, and this miRNA content fluctuates in response to the pathophysiological setting of the heart, indicating that the pathways affected by these differentially expressed miRNAs may be targets for new treatments. This review discusses a number of miRNAs and the evidence that supports their clinical relevance in CVD. The latest technologies in applying exosomal vesicles as cargo delivery vehicles for gene therapy, tissue regeneration, and cell repair are described.

10.
Medicina (Kaunas) ; 60(1)2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38256338

RESUMEN

Prostate cancer is the second leading cause of cancer death in men in the United States. Androgen deprivation therapy (ADT) is currently the primary treatment for metastatic prostate cancer, and some studies have shown that the use of anti-androgen drugs is related to a reduction in cognitive function, mood changes, diminished quality of life, dementia, and possibly Alzheimer's disease. ADT has potential physiological effects such as a reduction in white matter integrity and a negative impact on hypothalamic functions due to the lowering of testosterone levels or the blockade of downstream androgen receptor signaling by first- and second-generation anti-androgen drugs. A comparative analysis of prostate cancer patients undergoing ADT and Alzheimer patients identified over 30 shared genes, illustrating common ground for the mechanistic underpinning of the symptomatology. The purpose of this review was to investigate the effects of ADT on cognitive function, mood, and quality of life, as well as to analyze the relationship between ADT and Alzheimer's disease. The evaluation of prostate cancer patient cognitive ability via neurocognitive testing is described. Future studies should further explore the connection among cognitive deficits, mood disturbances, and the physiological changes that occur when hormonal balance is altered.


Asunto(s)
Enfermedad de Alzheimer , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/complicaciones , Neoplasias de la Próstata/tratamiento farmacológico , Antagonistas de Andrógenos/efectos adversos , Andrógenos , Calidad de Vida , Cognición
11.
J Tradit Complement Med ; 12(5): 447-454, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36081818

RESUMEN

Background and aim: Resveratrol is a bioactive molecule used in dietary supplements and herbal medicines and consumed worldwide. Prior work showed that resveratrol's anti-atherogenic properties are mediated in part through the adenosine A2A receptor. The present study explores the potential contribution of adenosine A2A receptor activation to neuroprotective action of resveratrol on cognitive deficits in a model of atherosclerosis-prone systemic lupus erythematosus. Experimental procedure: Using behavioral analysis (open field, static rod, novel object recognition) and QRT-PCR, this study measured working memory, anxiety, motor coordination, and expression of mRNA in the brain. Results and conclusion: Data indicate that resveratrol increases working memory, on average but not statistically, and shows a trend towards improved motor coordination (p = 0.07) in atherosclerosis-prone lupus mice. Additionally, resveratrol tends to increase mRNA levels of SIRT1, decrease vascular endothelial growth factor and CX3CL1 mRNA in the hippocampus. Istradefylline, an adenosine A2A receptor antagonist, antagonizes the effects of resveratrol on working memory (p = 0.04) and the expression of SIRT1 (p = 0.03), vascular endothelial growth factor (p = 0.04), and CX3CL1 (p = 0.03) in the hippocampus.This study demonstrates that resveratrol could potentially be a therapeutic candidate in the modulation of cognitive dysfunction in neuropsychiatric lupus, especially motor incoordination. Further human studies, as well as optimization of resveratrol administration, could confirm whether resveratrol may be an additional resource available to reduce the burden of cognitive impairment associated with lupus. Additionally, further studies need to address the role of A2A blockade in cognitive function among the autoimmune population. Section: 3. Dietary therapy/nutrients supplements. Taxonomy classification by EVISE: autoimmunity, inflammation, neurology.

12.
Medicina (Kaunas) ; 58(9)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36143964

RESUMEN

Background and Objectives: Cardiovascular (CV) risk is elevated in rheumatoid arthritis (RA). RA patient plasma causes pro-atherogenic derangements in cholesterol transport leading to macrophage foam cell formation (FCF). The TARGET randomized clinical trial compares CV benefits of 2 RA drug regimens. Hydoxychloroquine (HCQ) is a key medication used in TARGET. This study examines effects of HCQ on lipid transport to elucidate mechanisms underlying TARGET outcomes and as an indicator of likely HCQ effects on atherosclerosis in RA. Materials and Methods: THP1 human macrophages were exposed to media alone, IFNγ (atherogenic cytokine), HCQ, or HCQ + IFNγ. Cholesterol efflux protein and scavenger receptor mRNA levels were quantified by qRT-PCR and corresponding protein levels were assessed by Western blot. FCF was evaluated via Oil-Red-O and fluorescent-oxidized LDL. Intracellular cholesterol and efflux were quantified with Amplex Red assay. Results: With the exception of a decrease in the efflux protein cholesterol 27-hydroxylase in the presence IFNγ at all HCQ concentrations, no significant effect on gene or protein expression was observed upon macrophage exposure to HCQ and this was reflected in the lack of change in FCF and oxidized LDL uptake. Conclusions: HCQ did not significantly affect THP1 macrophage cholesterol transport. This is consistent with TARGET, which postulates superior effects of anti-TNF agents over sulfasalazine + HCQ.


Asunto(s)
Artritis Reumatoide , Aterosclerosis , Aterosclerosis/tratamiento farmacológico , Técnicas de Cultivo de Célula , Colesterol/metabolismo , Humanos , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Interferón gamma , Macrófagos , Oxigenasas de Función Mixta , ARN Mensajero/metabolismo , Sulfasalazina/metabolismo , Sulfasalazina/farmacología , Sulfasalazina/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral
13.
Metabolites ; 12(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005636

RESUMEN

Cholesterol and lipid metabolism is a broad topic that encompasses multiple aspects of cellular function in every organ [...].

14.
J Investig Med ; 70(6): 1433-1437, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35606100

RESUMEN

The Cardiovascular Inflammation Reduction Trial (CIRT) was designed to assess whether low-dose methotrexate (LD-MTX) would reduce future cardiac events in patients with metabolic syndrome or type 2 diabetes (T2DM) who are post-myocardial infarction (MI) or have multivessel disease. Our previous work indicates that MTX confers atheroprotection via adenosine A2A receptor (A2AR) activation. In order for A2AR ligation to reduce cardiovascular events, A2AR levels would need to be preserved during MTX treatment. This study was conducted to determine whether LD-MTX alters peripheral blood mononuclear cell (PBMC) adenosine receptor expression in persons at risk for cardiovascular events. Post-MI T2DM CIRT patients were randomized to LD-MTX or placebo (n=10/group). PBMC isolated from blood drawn at enrollment and after 6 weeks were evaluated for expression of adenosine receptors and reverse cholesterol transporters by real-time PCR. Fold change between time points was calculated using factorial analyses of variance. Compared with placebo, the LD-MTX group exhibited a trend toward an increase in A2AR (p=0.06), while A3R expression was significantly decreased (p=0.01) after 6 weeks. Cholesterol efflux gene expression did not change significantly. Persistence of A2AR combined with A3R downregulation indicates that failure of MTX to be atheroprotective in CIRT was not due to loss of adenosine receptors on PBMC (ClinicalTrials.gov identifier: NCT01594333).


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Infarto del Miocardio , Adenosina/metabolismo , Adenosina/farmacología , Adenosina/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Expresión Génica , Humanos , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares , Metotrexato/farmacología , Metotrexato/uso terapéutico , Monocitos/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P1/uso terapéutico
15.
Exp Gerontol ; 164: 111828, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35508280

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is characterized by progressive memory loss and cognitive impairment. Our understanding of AD pathogenesis is limited and no effective disease-modifying treatment is available. Mitochondria are cytoplasmic organelles critical to the homeostatic regulation of glucose and energy in the cell. METHODS: Mitochondrial abnormalities are found early in the course of AD and dysfunctional mitochondria are involved in AD progression. The resulting respiratory chain impairment, neuronal apoptosis, and generation of reactive oxygen species are highly damaging to neurons. Restoration of mitochondrial function may provide a novel therapeutic strategy for AD. RESULTS: This review discusses the specifics of mitochondrial fragmentation, imbalances in fission and fusion, and DNA damage seen in AD and the contribution of compromised mitochondrial activity to AD etiopathogenesis. It explores how an understanding of the processes underlying mitochondrial failure may lead to urgently needed treatment innovations. It considers individual mitochondrial proteins that have emerged as promising drug targets and evaluates neuroprotective agents that could improve the functional state of mitochondria in the setting of AD. CONCLUSIONS: There is great promise in exploring original approaches to preserving mitochondrial viability as a means to achieve breakthroughs in treating AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Disfunción Cognitiva/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo
16.
Metabolites ; 11(10)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34677405

RESUMEN

Apolipoprotein (apo) B, the critical structural protein of the atherogenic lipoproteins, has two major isoforms: apoB48 and apoB100. ApoB48 is found in chylomicrons and chylomicron remnants with one apoB48 molecule per chylomicron particle. Similarly, a single apoB100 molecule is contained per particle of very-low-density lipoprotein (VLDL), intermediate density lipoprotein, LDL and lipoprotein(a). This unique one apoB per particle ratio makes plasma apoB concentration a direct measure of the number of circulating atherogenic lipoproteins. ApoB levels indicate the atherogenic particle concentration independent of the particle cholesterol content, which is variable. While LDL, the major cholesterol-carrying serum lipoprotein, is the primary therapeutic target for management and prevention of atherosclerotic cardiovascular disease, there is strong evidence that apoB is a more accurate indicator of cardiovascular risk than either total cholesterol or LDL cholesterol. This review examines multiple aspects of apoB structure and function, with a focus on the controversy over use of apoB as a therapeutic target in clinical practice. Ongoing coronary artery disease residual risk, despite lipid-lowering treatment, has left patients and clinicians with unsatisfactory options for monitoring cardiovascular health. At the present time, the substitution of apoB for LDL-C in cardiovascular disease prevention guidelines has been deemed unjustified, but discussions continue.

17.
Medicina (Kaunas) ; 57(8)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34441038

RESUMEN

SARS-CoV-2, a single-stranded RNA coronavirus, causes an illness known as coronavirus disease 2019 (COVID-19). The highly transmissible virus gains entry into human cells primarily by the binding of its spike protein to the angiotensin-converting enzyme 2 receptor, which is expressed not only in lung tissue but also in cardiac myocytes and the vascular endothelium. Cardiovascular complications are frequent in patients with COVID-19 and may be a result of viral-associated systemic and cardiac inflammation or may arise from a virus-induced hypercoagulable state. This prothrombotic state is marked by endothelial dysfunction and platelet activation in both macrovasculature and microvasculature. In patients with subclinical atherosclerosis, COVID-19 may incite atherosclerotic plaque disruption and coronary thrombosis. Hypertension and obesity are common comorbidities in COVID-19 patients that may significantly raise the risk of mortality. Sedentary behaviors, poor diet, and increased use of tobacco and alcohol, associated with prolonged stay-at-home restrictions, may promote thrombosis, while depressed mood due to social isolation can exacerbate poor self-care. Telehealth interventions via smartphone applications and other technologies that document nutrition and offer exercise programs and social connections can be used to mitigate some of the potential damage to heart health.


Asunto(s)
COVID-19 , Enfermedades Cardiovasculares , Trombosis , Anciano , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Endotelio Vascular , Humanos , SARS-CoV-2
18.
Pharmaceuticals (Basel) ; 15(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35056068

RESUMEN

Rheumatoid arthritis (RA) carries significant risk for atherosclerotic cardiovascular disease (ASCVD). Traditional ASCVD risk factors fail to account for this accelerated atherosclerosis. Shared inflammatory pathways are fundamental in the pathogenesis of both diseases. Considering the impact of RA in increasing cardiovascular morbidity and mortality, the characterization of therapies encompassing both RA and ASCVD management merit high priority. Despite little progress, several drugs discussed here promote remission and or lower rheumatoid disease activity while simultaneously conferring some level of atheroprotection. Methotrexate, a widely used disease-modifying drug used in RA, is associated with significant reduction in cardiovascular adverse events. MTX promotes cholesterol efflux from macrophages, upregulates free radical scavenging and improves endothelial function. Likewise, the sulfonamide drug sulfasalazine positively impacts the lipid profile by increasing HDL-C, and its use in RA has been correlated with reduced risk of myocardial infraction. In the biologic class, inhibitors of TNF-α and IL-6 contribute to improvements in endothelial function and promote anti-atherogenic properties of HDL-C, respectively. The immunosuppressant hydroxychloroquine positively affects insulin sensitization and the lipid profile. While no individual therapy has elicited optimal atheroprotection, further investigation of combination therapies are ongoing.

19.
Medicina (Kaunas) ; 56(9)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927589

RESUMEN

Covid-19 is a new highly contagious RNA viral disease that has caused a global pandemic. Human-to-human transmission occurs primarily through oral and nasal droplets and possibly through the airborne route. The disease may be asymptomatic or the course may be mild with upper respiratory symptoms, moderate with non-life-threatening pneumonia, or severe with pneumonia and acute respiratory distress syndrome. The severe form is associated with significant morbidity and mortality. While patients who are unstable and in acute distress need immediate in-person attention, many patients can be evaluated at home by telemedicine or videoconferencing. The more benign manifestations of Covid-19 may be managed from home to maintain quarantine, thus avoiding spread to other patients and health care workers. This document provides an overview of the clinical presentation of Covid-19, emphasizing telemedicine strategies for assessment and triage of patients. Advantages of the virtual visit during this time of social distancing are highlighted.


Asunto(s)
Infecciones por Coronavirus , Pandemias , Neumonía Viral , Telemedicina/métodos , Triaje , Betacoronavirus/aislamiento & purificación , COVID-19 , Control de Enfermedades Transmisibles/métodos , Control de Enfermedades Transmisibles/organización & administración , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Transmisión de Enfermedad Infecciosa/prevención & control , Humanos , Pandemias/prevención & control , Neumonía Viral/diagnóstico , Neumonía Viral/epidemiología , Neumonía Viral/etiología , Neumonía Viral/prevención & control , Neumonía Viral/terapia , SARS-CoV-2 , Evaluación de Síntomas/métodos , Triaje/métodos , Triaje/organización & administración
20.
J Investig Med ; 68(6): 1135-1140, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32699179

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative brain disorder associated with relentlessly progressive cognitive impairment and memory loss. AD pathology proceeds for decades before cognitive deficits become clinically apparent, opening a window for preventative therapy. Imbalance of clearance and buildup of amyloid ß and phosphorylated tau proteins in the central nervous system is believed to contribute to AD pathogenesis. However, multiple clinical trials of treatments aimed at averting accumulation of these proteins have yielded little success, and there is still no disease-modifying intervention. Here, we discuss current knowledge of AD pathology and treatment with an emphasis on emerging biomarkers and treatment strategies.


Asunto(s)
Enfermedad de Alzheimer/terapia , Investigación Biomédica , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...